
Predicate logic - The need for a richer language 

we developed propositional logic by examining it from three different angles: its proof theory (the 

natural deduction calculus), its syntax (the tree-like nature of formulas) and its semantics (what 

these for-mulas actually mean). From the outset, this enterprise was guided by the study of 

declarative sentences, statements about the world which can, for every valuation or model, be 

given a truth value. 

We begin this second chapter by pointing out the limitations of propo-sitional logic with respect 

to encoding declarative sentences. Propositional logic dealt quite satisfactorily with sentence 

components like not, and, or and if ... then, but the logical aspects of natural and artificial languages 

are much richer than that. What can we do with modifiers like there exists..., all ..., among . . . and 

only ... ? Here, propositional logic shows clear limitations and the desire to express more subtle 

declarative sentences led to the design of predicate logic, which is also called first-order logic. 

Let us consider the declarative sentence  

Every student is younger than some instructor. 

In propositional logic, we could identify this assertion with a propositional atom p. However, that 

fails to reflect the finer logical structure of this sen-tence. What is this statement about? Well, it is 

about being a student, being an instructor and being younger than somebody else. These are all 

proper-ties of some sort, so we would like to have a mechanism for expressing them together with 

their logical relationships and dependences. 

We now use predicates for that purpose. For example, we could write S(andy) to denote that Andy 

is a student and I(paul) to say that Paul is an instructor. Likewise, Y (andy, paul) could mean that 

Andy is younger than Paul. The symbols S, I and Y are called predicates. Of course, we have to 

be clear about their meaning. The predicate Y could have meant that the second person is younger 

than the first one, so we need to specify exactly what these symbols refer to. 

Having such predicates at our disposal, we still need to formalise those parts of the sentence above 

which speak of every and some. Obviously, this sentence refers to the individuals that make up 

some academic community (left implicit by the sentence), like Kansas State University or the 

University of Birmingham, and it says that for each student among them there is an instructor 

among them such that the student is younger than the instructor. 

These predicates are not yet enough to allow us to express the sentence in (2.1). We don’t really 

want to write down all instances of S(·) where · is replaced by every student’s name in turn. 

Similarly, when trying to codify a sentence having to do with the execution of a program, it would 

be rather laborious to have to write down every state of the computer. Therefore, we employ the 

concept of a variable. Variables are written u, v, w, x, y, z,... or x1, y3, u5,... and can be thought 

of as place holders for concrete values (like a student, or a program state). Using variables, we can 

now specify the meanings of S, I and Y more formally: 

 

S(x) : x is a student 



I(x) : x is an instructor 

Y (x, y) : x is younger than y. 

Note that the names of the variables are not important, provided that we use them consistently. We 

can state the intended meaning of I by writing 

 

I(y) : y is an instructor 

 

or, equivalently, by writing 

 

I(z) : z is an instructor. 

 

Variables are mere place holders for objects. The availability of variables is still not sufficient for 

capturing the essence of the example sentence above. We need to convey the meaning of ‘Every 

student x is younger than some instructor y.’ This is where we need to introduce quantifiers ∀ 

(read: ‘for all’) and ∃ (read: ‘there exists’ or ‘for some’) which always come attached to a variable, 

as in ∀x (‘for all x’) or in ∃z (‘there exists z’, or ‘there is some z’). Now we can write the example 

sentence in an entirely symbolic way as 

∀x (S(x) → (∃y (I(y) ∧ Y (x, y)))) 

Actually, this encoding is rather a paraphrase of the original sentence. In our example, the re-

translation results in For every x, if x is a student, then there is some y which is an instructor such 

that x is younger than y. 

Different predicates can have a different number of arguments. The predi-cates S and I have just 

one (they are called unary predicates), but predicate Y requires two arguments (it is called a binary 

predicate). Predicates with any finite number of arguments are possible in predicate logic. 

Another example is the sentence Not all birds can fly. 

For that we choose the predicates B and F which have one argument ex-pressing 

B(x) : x is a bird 

F(x) : x can fly. 

The sentence ‘Not all birds can fly’ can now be coded as 

¬(∀x (B(x) → F(x))) 

 



saying: ‘It is not the case that all things which are birds can fly.’ Alterna-tively, we could code this 

as 

∃x (B(x) ∧ ¬F(x)) 

meaning: ‘There is some x which is a bird and cannot fly.’ Note that the first version is closer to 

the linguistic structure of the sentence above. These two formulas should evaluate to T in the world 

we currently live in since, for example, penguins are birds which cannot fly. Shortly, we address 

how such formulas can be given their meaning in general. We will also explain why formulas like 

the two above are indeed equivalent semantically. 

Coding up complex facts expressed in English sentences as logical formulas in predicate logic is 

important – e.g. in software design with UML or in formal specification of safety-critical systems 

– and much more care must be taken than in the case of propositional logic. However, once this 

translation has been accomplished our main objective is to reason symbolically () or semantically 

() about the information expressed in those formulas. 

we extend our natural deduction calculus of propositional logic so that it covers logical formulas 

of predicate logic as well.  


